January 2013 |
Savouring the AMAZING art on this agency website, I'm struck by all the slanted streets and fish-eye perspectives. See how this artist sloped the floor to emphasize our hero's fall into the pointy bits.
To play with perspective, you've got to get perspective. Well, I thought I did. And then last week I tried drawing simple road scenes. Like, generic road disappearing into the horizon from the viewpoint of someone standing on it.
Hahahahaha. Feels like you're about two storeys off the ground, no?
Tried the same with a piazza. Again, 20-foot tall viewer. Tried doing a car coming over a hill -- it looked like a beetle because the perspective on its back end was wrong.
In art class, my painting of a boardwalk receding into the distance looks like we're standing on a balcony. I mean, this is a problem. It sucks that my painting doesn't look the way I want it to, simply because I don't know how to do what I want!
So this week I'm passionately about understanding perspective. My goal is to be able to draw a scene with the viewpoint and depth that I want on my first try. Curvy road winding down a hill and behind some mountains? Street scene seen from around the corner? These should come easily, right?
A bird's eye perspective on the Chrysler Building's gargoyles from a 45 degree angle, okay, that would be a headscratcher for anyone.
I already know about two-point perspective, even though I don't understand why we stick these mysterious vanishing points in one place or another. I have (yay me!) figured out the horizon line is the viewer's eye level. If a line of trees is coming at you in the picture, the canopies will slant upward above the horizon and visible tree roots will slant below it.
And that's where I run into a wall.
Help, Internet? Ah, says Internet, perspective's way more complicated than you thought, Lia. For example, Rule #4:
4. For two sets of parallel lines at some angle in the scene, the two vanishing points form that same angle at the viewer's eye, regardless of the orientation of the angle in space. In particular, the vanishing points for any 90º angle in space form a 90º angle at the viewer's eye.
Get it? Me neither. But I am persevering!